Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue.
نویسندگان
چکیده
AIMS We assessed the impact of vascular and perivascular tumour necrosis factor-alpha (TNF-α) on the endothelin (ET)-1/nitric oxide (NO) system and the molecular pathways involved in small arteries from visceral fat of obese patients (Obese) and Controls. METHODS AND RESULTS Isolated small arteries from 16 Obese and 14 Controls were evaluated on a pressurized micromyograph. Endogenous ET-1 activity was assessed by the ETA blocker BQ-123. TNF-α and NO were tested by anti-TNF-α infliximab (IFX) and N(ω)-nitro-l-arginine methylester (L-NAME). Gene and protein expression of TNF-α, ET-1, ETA, and ETB receptors were determined by RT-PCR and IHC on arterial wall and in isolated adipocytes. Obese showed a blunted L-NAME-induced vasoconstriction, which was potentiated by IFX, and an increased relaxation to BQ-123, unaffected by L-NAME but attenuated by IFX. Perivascular adipose tissue (PVAT) removal reversed these effects. Obese showed intravascular superoxide excess, which was decreased by apocynin (NAD(P)H oxidase inhibitor), L-NAME, and BQ-123 incubations, and abolished by IFX. An increased vascular expression of ET-1, ETA, and ETB receptors, and higher vascular/perivascular TNF-α and TNF-α receptor expression were also detected. The arterial expression and phosphorylation of c-Jun N-terminal kinase (JNK) were higher in Obese vs. Controls, and downregulated by IFX. CONCLUSIONS In small arteries of Obese, PVAT-derived TNF-α excess, and an increased vascular expression of ET-1 and ETA receptor, contribute to the ET-1/NO system imbalance, by impairing tonic NO release. Reactive oxygen species excess, via NAD(P)H oxidase activation, induces the endothelial nitric oxide synthase uncoupling, which in turn generates superoxide and impairs NO production. The up-regulated JNK pathway represents a crucial molecular signalling involved in this process.
منابع مشابه
Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients.
BACKGROUND Inflammation in adipose tissue has been implicated in vascular dysfunction, but the local mechanisms by which this occurs are unknown. METHODS AND RESULTS Small arteries with and without perivascular adipose tissue were taken from subcutaneous gluteal fat biopsy samples and studied with wire myography and immunohistochemistry. We established that healthy adipose tissue around human...
متن کاملRegulation of Vascular Smooth Muscle Tone by Adipose-Derived Contracting Factor
Obesity and arterial hypertension, important risk factors for atherosclerosis and coronary artery disease, are characterized by an increase in vascular tone. While obesity is known to augment vasoconstrictor prostanoid activity in endothelial cells, less is known about factors released from fat tissue surrounding arteries (perivascular adipose). Using lean controls and mice with either monogeni...
متن کاملObesity-Related Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat.
OBJECTIVE Perivascular adipose tissue (PVAT) exerts an anticontractile effect in response to various vasoconstrictor agonists, and this is lost in obesity. A recent study reported that bariatric surgery reverses the damaging effects of obesity on PVAT function. However, PVAT function has not been characterized after weight loss induced by caloric restriction, which is often the first line treat...
متن کاملPerivascular adipose tissue as a messenger of the brain-vessel axis: role in vascular inflammation and dysfunction.
Perivascular adipose tissue AT is a critical regulator of vascular function, which until recently has been greatly overlooked. Virtually all arteries are surrounded by a significant amount of perivascular adipose tissue, which has long been considered to serve primarily a supportive, mechanical purpose. Recent studies show that both visceral and perivascular fat is a very active endocrine and p...
متن کاملInteractions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels.
BACKGROUND Adiponectin is an adipokine with potentially important roles in human cardiovascular disease states. We studied the role of adiponectin in the cross-talk between adipose tissue and vascular redox state in patients with atherosclerosis. METHODS AND RESULTS The study included 677 patients undergoing coronary artery bypass graft surgery. Endothelial function was evaluated by flow-medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European heart journal
دوره 36 13 شماره
صفحات -
تاریخ انتشار 2015